metal-organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Di-Mei Chen,^a Xin-Jü Ma,^b Bing Tu,^b Wen-Jie Feng^b and Zhi-Min Jin^b*

 ^aSchool of Chemistry and Materials Engineering, Wenzhou University, Zhejiang, Wenzhou
325027, People's Republic of China, and
^bCollege of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China

Correspondence e-mail: zimichem@sina.com

Key indicators

Single-crystal X-ray study T = 273 K Mean σ (C–C) = 0.002 Å R factor = 0.025 wR factor = 0.065 Data-to-parameter ratio = 24.3

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

© 2006 International Union of Crystallography All rights reserved

Redetermination of dichloro(*N*,*N*,*N*',*N*'-tetramethylethylenediamine)zinc(II)

The crystal structure determination of the title compound, $[ZnCl_2(C_6H_{16}N_2)]$, has been reported previously and converged with an R(F) value of 0.067 [Htoon & Ladd (1973). J. Cryst. Mol. Struct. **3**, 95–102]. The present redetermination [R(F) = 0.025] confirms the previous study, but with higher precision and with smaller ranges of N-C bond lengths and Zn-N-C(methyl) angles.

Comment

The crystal structure of the title compound, (I), has been determined previously by Htoon & Ladd (1973) with a reliability factor $R(F) = 0.067 [P2_1/c, a = 7.716 (3), b = 13.335 (9), c = 11.545 (5) Å, <math>\beta = 105.59 (6)^{\circ}$] (CSD refcode TMENZN; Cambridge Structural Database, Version 5.26; Allen, 2002). In addition, some other N,N,N',N'-tetramethylethylenediamine (TMEDA) metal complexes have been subject to single-crystal X-ray diffraction, such as lead(II)–TMEDA (Kokozay & Sienkiewicz, 1995), alkoxopalladium–TMEDA (Kim *et al.*, 1995), (TMEDA)nickel bis(acetylacetonate) (Zeller *et al.*, 2001) and (TMEDA)copper tropolonate (Camard *et al.*, 2005). The present redetermination of (I) converges with a better reliability factor [R(F) = 0.025] and confirms the previous study by Htoon & Ladd (1973), but with significant changes in the N–C bond lengths and Zn–N–C(methyl) bond angles.

As shown in Fig. 1, in (I) zinc is chelated by two N atoms from the TMEDA ligand, and the geometry around the Zn atom is distorted tetrahedral. The Zn-N bond lengths (Table 1) are close to those observed in the previous study [2.107 (8) and 2.057 (9) Å]. The N-C bond lengths range from 1.481 (2) to 1.488 (2) Å, and deviate significantly from those of the previous study [1.416 (1)–1.583 (4) Å], but are similar to those in (TMEDA)copper tropolonate [1.483 (2)– 1.503 (2) Å; Camard *et al.*, 2005]. The Zn-N-C bond angles [102.71 (9) and 103.99 (10)°] in the Zn/N1/C3/C4/N2 ring deviate somewhat from those of the previous determination [100.2 (6) and 105.5 (7)°]. In the present study, the Zn-N-C(methyl) bond angles, ranging from 110.92 (10) to 114.61 (10)°, are comparable to one another, whereas in the previous study the two Zn-N-C(methyl) bond angles Received 24 October 2006

Accepted 27 October 2006

2549 independent reflections 2424 reflections with $I > 2\sigma(I)$

every 97 reflections

intensity decay: 1.6%

 $w = 1/[\sigma^2(F_0^2) + (0.0366P)^2]$

where $P = (F_0^2 + 2F_c^2)/3$

Extinction correction: SHELXL97 Extinction coefficient: 0.0239 (13)

+ 0.6052P]

 $(\Delta/\sigma)_{\rm max} = 0.001$

 $\Delta \rho_{\rm max} = 0.56 \text{ e } \text{\AA}^{-3}$

 $\Delta \rho_{\rm min} = -0.61 \ {\rm e} \ {\rm \AA}^{-3}$

 $R_{\rm int} = 0.031$

 $\theta_{\rm max} = 27.5^{\circ}$ 3 standard reflections

Figure 1

A view of the molecular structure of (I) with displacement ellipsoids drawn at the 40% probability level.

Figure 2

The molecular packing of (I), viewed along the *a* axis. Hydrogen bonds are indicated by dashed lines. Atom code: Zn checkered green spheres, Cl hatched green spheres, N blue dotted spheres, C black spheres, H greyblue spheres.

around the same N atom [116.0 (8) and 108.3 (8)°, 115.3 (8) and 108.8 $(6)^{\circ}$] differ greatly from each other.

In the crystal structure, molecules are linked together by weak $C-H \cdots Cl$ interactions (Fig. 2 and Table 2).

Experimental

N, N, N', N'-tetramethylethylenediamine and zinc chloride were mixed in an equimolar ratio in water and heated until a clear solution resulted. Colourless block-shaped single crystals of (I) were obtained from the solution by slow evaporation at room temperature over a period of 5 d.

 \times 0.43 mm

Crystal data

$[ZnCl_2(C_6H_{16}N_2)]$	Z = 4
$M_r = 252.50$	$D_x = 1.512 \text{ Mg m}^{-3}$
Monoclinic, $P2_1/c$	Mo $K\alpha$ radiation
a = 7.6017 (2) Å	$\mu = 2.65 \text{ mm}^{-1}$
b = 13.2521 (4) Å	T = 273 (2) K
c = 11.3396 (3) Å	Block, colourless
$\beta = 103.873 \ (1)^{\circ}$	$0.50 \times 0.45 \times 0.43$
$V = 1109.01 (5) \text{ Å}^3$	

Data collection

Siemens P4 diffractometer (i) scans Absorption correction: multi-scan (SHELXTL; Bruker, 1998) $T_{\min} = 0.351, T_{\max} = 0.396$ (expected range = 0.285 - 0.321)10612 measured reflections

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.025$ $wR(F^2) = 0.065$ S = 1.002549 reflections 105 parameters H-atom parameters constrained

Table 1

Selected geometric parameters (Å, °).

Zn-N2	2.0876 (14)	N1-C2	1.4861 (19)
Zn-N1	2.0968 (13)	N1-C3	1.487 (2)
Zn-Cl1	2.2116 (5)	N2-C5	1.481 (2)
Zn-Cl2	2.2173 (4)	N2-C6	1.485 (2)
N1-C1	1.481 (2)	N2-C4	1.488 (2)
N2-Zn-N1	87.68 (5)	C1-N1-Zn	114.61 (10)
N2-Zn-Cl1	110.75 (4)	C2-N1-Zn	110.92 (10)
N1-Zn-Cl1	112.60 (4)	C3-N1-Zn	102.71 (9)
N2-Zn-Cl2	111.70 (4)	C5-N2-Zn	112.59 (11)
N1-Zn-Cl2	110.85 (4)	C6-N2-Zn	111.54 (11)
Cl1-Zn-Cl2	119.001 (19)	C4-N2-Zn	103.99 (10)

Table 2				
Hydrogen-bond	geometry	(Å,	°).	

$D-H\cdots A$	D-H	$H \cdots A$	$D \cdots A$	$D - H \cdots A$
$C5-H5A\cdots Cl1^{i}$	0.98	2.83	3.676 (2)	144
$C6-H6A\cdots Cl1^{ii}$	0.98	2.84	3.7534 (18)	156

Symmetry codes: (i) x - 1, y, z; (ii) -x + 1, -y + 1, -z.

The H atoms were placed in calculated positions and allowed to ride on their parent atoms at distances of 0.98 and 0.99 Å, with $U_{\rm iso}({\rm H})$ values of $1.2U_{\rm eq}$ of the parent atoms.

Data collection: PROCESS-AUTO (Rigaku, 1998): cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/ MSC, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1998).

References

Allen, F. H. (2002). Acta Cryst. B58, 380-388.

Bruker (1998). SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.

Camard, A., Ihara, Y. & Murata, F. (2005). Inorg. Chim. Acta, 358, 409-414. Htoon, S. & Ladd, M. F. C. (1973). J. Cryst. Mol. Struct. 3, 95-102.

Kim, Y. J., Choi, J. C. & Osakada, K. (1995). J. Organomet. Chem. 491, 97-102.

Kokozay, V. N. & Sienkiewicz, A. V. (1995). Polyhedron, 14, 1547-1551.

Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, 3-9-12 Akishima, Tokyo 196-8666, Japan.

Rigaku/MSC (2004). CrystalStructure. Version 3.6.0. Rigaku/MSC, The Woodlands, Texas, USA.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

Zeller, A., Herdtweck, E. & Strassner, T. (2001). Inorg. Chem. Commun. 7, 296-301.